Matched interface and boundary (MIB) method for elliptic problems with sharp-edged interfaces

نویسندگان

  • Sining Yu
  • Yongcheng Zhou
  • Guo-Wei Wei
چکیده

Elliptic problems with sharp-edged interfaces, thin-layered interfaces and interfaces that intersect with geometric boundary, are notoriously challenging to existing numerical methods, particularly when the solution is highly oscillatory. This work generalizes the matched interface and boundary (MIB) method previously designed for solving elliptic problems with curved interfaces to the aforementioned problems. We classify these problems into five distinct topological relations involving the interfaces and the Cartesian mesh lines. Flexible strategies are developed to systematically extends the computational domains near the interface so that the standard central finite difference scheme can be applied without the loss of accuracy. Fictitious values on the extended domains are determined by enforcing the physical jump conditions on the interface according to the local topology of the irregular point. The concepts of primary and secondary fictitious values are introduced to deal with sharp-edged interfaces. For corner singularity or tip singularity, an appropriate polynomial is multiplied to the solution to remove the singularity. Extensive numerical experiments confirm the designed second order convergence of the proposed method. 2006 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High order matched interface and boundary method for elliptic equations with discontinuous coefficients and singular sources

This paper introduces a novel high order interface scheme, the matched interface and boundary (MIB) method, for solving elliptic equations with discontinuous coefficients and singular sources on Cartesian grids. By appropriate use of auxiliary line and/or fictitious points, physical jump conditions are enforced at the interface. Unlike other existing interface schemes, the proposed method disas...

متن کامل

Three-dimensional matched interface and boundary (MIB) method for treating geometric singularities

This paper reports the three-dimensional (3D) generalization of our previous 2D higher-order matched interface and boundary (MIB) method for solving elliptic equations with discontinuous coefficients and non-smooth interfaces. New MIB algorithms that make use of two sets of interface jump conditions are proposed to remove the critical acute angle constraint of our earlier MIB scheme for treatin...

متن کامل

MIB Galerkin method for elliptic interface problems

Material interfaces are omnipresent in the real-world structures and devices. Mathematical modeling of material interfaces often leads to elliptic partial differential equations (PDEs) with discontinuous coefficients and singular sources, which are commonly called elliptic interface problems. The development of high-order numerical schemes for elliptic interface problems has become a well defin...

متن کامل

MIB method for elliptic equations with multi-material interfaces

Elliptic partial differential equations (PDEs) are widely used to model real-world problems. Due to the heterogeneous characteristics of many naturally occurring materials and man-made structures, devices, and equipments, one frequently needs to solve elliptic PDEs with discontinuous coefficients and singular sources. The development of high-order elliptic interface schemes has been an active r...

متن کامل

A simple method for matrix-valued coefficient elliptic equations with sharp-edged interfaces

Keywords: Traditional finite element method Elliptic equation with matrix-valued coefficients Body-fitting grids Sharp-edged interface Symmetric positive definite a b s t r a c t The traditional finite element method has a number of nice properties, and thus it is highly desired for matrix-valued coefficient elliptic equations with sharp-edged interfaces. However , its efficient implementation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 224  شماره 

صفحات  -

تاریخ انتشار 2007